Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization.
نویسندگان
چکیده
Several factors have been found recently to have a significant impact on newborn bone mineral content (BMC) and developing fetal bone. Recently we showed that maternal vitamin D deficiency may affect fetal bone mineralization. Korean winter-born newborn infants had extremely low serum 25-hydroxyvitamin D (25-OHD), high serum cross-linked carboxy-terminal telopeptide of type I collagen (ICTP; a bone resorption marker), and markedly lower (8 %) total body BMC than summer-born newborn infants. Infant total body BMC was positively correlated with cord serum 25-OHD and inversely correlated with ICTP, which was also negatively correlated with vitamin D status. In three separate studies on North American neonates we found markedly lower (8-12 %) BMC in summer newborn infants compared with winter newborn infants, the opposite of the findings for Korean neonates. The major reason for the conflicting BMC results might be the markedly different maternal vitamin D status of the North American and Korean subjects. Recently, we found evidence of decreased bone formation rates in infants who were small-for-gestational age (SGA) compared with infants who were appropriate-for-gestational age; we reported reduced BMC, cord serum osteocalcin (a marker of bone formation) and 1,25-dihydroxyvitamin D (the active metabolite of vitamin D), but no alterations in indices of fetal bone collagen metabolism. In theory, reduced utero-placental blood flow in SGA infants may result in reduced transplacental mineral supply and reduced fetal bone formation. Infants of diabetic mothers (IDM) have low BMC at birth, and infant BMC correlated inversely with poor control of diabetes in the mother, specifically first trimester maternal mean capillary blood glucose concentration, implying that factors early in pregnancy might have an effect on fetal BMC. The low BMC in IDM may be related to the decreased transplacental mineral transfer. Cord serum ICTP concentrations were higher in IDM than in control subjects, implying increased intrauterine bone resorption. BMC is consistently increased with increasing body weight and length in infants. Race and gender differences in BMC appear in early life, but not at birth. Ethanol consumption and smoking by the mother during pregnancy affect fetal skeletal development.
منابع مشابه
Mineral homeostasis in late preterm infants
80% of mineral accretion take place in the third trimester of gestation with a fetal accretion rates of 100-150 mg/ kg/day for calcium, 50-70 mg/kg/day for phosphate and 3 mg/kg/day for magnesium. During the third trimester of gestation fetal weight triples but Ca content quadruples with a faster increase in fetal body Ca accretion from 32 to 40 weeks of gestation [1]. As a result, late preterm...
متن کاملRegional differences in architecture and mineralization of developing mandibular bone.
The goal of this study was to investigate the mutual relationship between architecture and mineralization during early development of the pig mandible. These factors are considered to define the balance between the requirements for bone growth on the one hand and for load bearing on the other. Architecture and mineralization were examined using micro-CT, whereas the mineral composition was asse...
متن کاملLoss of Iroquois homeobox transcription factors 3 and 5 in osteoblasts disrupts cranial mineralization
Cranial malformations are a significant cause of perinatal morbidity and mortality. Iroquois homeobox transcription factors (IRX) are expressed early in bone tissue formation and facilitate patterning and mineralization of the skeleton. Mice lacking Irx5 appear grossly normal, suggesting that redundancy within the Iroquois family. However, global loss of both Irx3 and Irx5 in mice leads to sign...
متن کاملMetabolic Bone Disease in preterm newborn: an update on nutritional issues
Osteopenia, a condition characterised by a reduction in bone mineral content, is a common disease of preterm babies between the tenth and sixteenth week of life. Prematurely born infants are deprived of the intrauterine supply of minerals affecting bone mineralization.The aetiology is multifactorial: inadequate nutrients intake (calcium, phosphorus and vitamin D), a prolonged period of total pa...
متن کاملIn utero physiology: role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D.
Only limited aspects of the transfer of calcium across the placenta to the fetus are known. Clinical outcome studies suggest that bone mineral mass in newborn infants is related to maternal size and dairy intake. Available data indicate that vitamin D deficiency may also limit in utero fetal bone mineral accumulation. Recent data suggest that maternal vitamin D status affects long-term childhoo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Proceedings of the Nutrition Society
دوره 59 1 شماره
صفحات -
تاریخ انتشار 2000